Detection of Financial Statement Fraud Using Evolutionary Algorithms

ثبت نشده
چکیده

In this paper, a fuzzy rule-based classifier (FRBC) system was developed and used in two Evolutionary Algorithm Models to detect patterns of financial statement fraud and assess the effectiveness of a subset of SAS No. 99 red flag variables. Each FRBC was evolved by using Generic Algorithm(GA) and MARLEDA – a modern estimation of distribution algorithm (EDA) – and trained with a data collection of both Accounting and Auditing Enforcement Release (AAER)-cited corporations and matched, non-cited corporations. The quality of each FRBC was measured in terms of its classification accuracy and complexity. Using cross-validation, MARLEDA and GA yielded training classification accuracy rates of 69.53 and 62.10 percent, respectively, and validation accuracy rates of 53.05 percent and 59 percent, respectively. Finally, six red flags were considered to hold the most promise in detecting patterns of fraud.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Financial Reporting Fraud Detection: An Analysis of Data Mining Algorithms

In the last decade, high profile financial frauds committed by large companies in both developed and developing countries were discovered and reported. This study compares the performance of five popular statistical and machine learning models in detecting financial statement fraud. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements betw...

متن کامل

Presenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm

both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...

متن کامل

Identification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms

In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...

متن کامل

Identification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms

In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...

متن کامل

Fraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms

The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...

متن کامل

Predicting financial statement fraud using fuzzy neural networks

Fraud is a common phenomenon in business, and according to Section 24 of the Iranian Auditing Standards, it is the fraudulent act of one or more managers, employees, or third parties to derive unfair advantage and any intentional or unlawful conduct. Financial statements are a means of transmitting confidential management information about the<br ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012